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Chapter 1

Introduction

1.1 Ceph at CERN

Ceph is an open source distributed storage system that is designed for excellent relia-

bility, performance and scalability. It was founded in 2006 and since then it has been

adopted by a large number of tech giants such as RedHat, Open Suse, CERN, Cisco,

SanDisk, Fujitsu etc. One of the main reason for its popularity is it provides its user

with object storage, block storage and file storage all in one. It is a de facto persistent

storage for block devices used by OpenStack and hence it becomes a first choice for ven-

dors using OpenStack. At CERN, in addition to being large-scale Ceph users, people at

CERN are also active contributors to Ceph components. CERN has the largest cluster

of Ceph deployed in its data center. It is used for several storage use-cases such as, for:

• OpenStack Images and Volumes (RBD)

• HPC scratch spaces (CephFS)

• Private NFS-like file shares (CephFS)

• Object storage compatible with Amazon S3 (RGW)

CERN has to deal with petabytes of data so it is always on the look out for ways to

simplify its cloud-based deployments. It has been actively evaluating container-based

approaches that build upon its Kubernetes infrastructure. One such technology that re-

cently caught attention was Rook; a storage orchestrator for cloud-native environments.

1
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1.2 Motivation and Goal

Although, Ceph has been satisfying its storage use-cases for years now, it would be a

cherry on the top if somehow its operational complexities could be reduced. CERN

currently uses a combination of kickstart and puppet to configure and manage Ceph

deployments which poses some time constraints. With the recent Rook Ceph integration

being in Beta stage, it made sense to evaluate it to see if future Ceph clusters could be

deployed using this tool. To be precise, the following areas were hoped to be improved

by Rook:

• Reduced deployment times for new clusters.

• Simplified upgrades.

• More agile horizontal scaling.

• Better failure tolerance.

• Reduced reliance on expert Ceph operators

1.2.1 Problem Statement

In order to address above mentioned improvements, the idea is to deploy Ceph containers

on Kubernetes cluster using Rook and to decide whether we should adopt this stack for

our future clusters here at CERN or not. To be precise, the following steps were involved

in this project:

• Deploy Kubernetes clusters in virtual environment

• Deploy Kubernetes cluster in physical environment

• Deploy Ceph clusters using Rook in virtual as well as physical environments using

stable versions

• Deploy Ceph clusters using development code to access orchestrator command line

interface

• Establish an evaluation criteria for deployments

• Compare results with previous deployment technique

• Explore further storage use-cases at CERN that are needed in orchestrator CLI

• Contribute open source code to meet those storage use-cases
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1.2.2 Report Organization

Chapter 2 briefly covers introduction and architecture of main technologies used in this

project. Chapter 3 includes the detailed deployment process followed in this project.

Chapter 4 talks about evaluation metrics and results followed by chapter 5 which covers

conclusion and future work. Chapter 6 gives a list of solutions to problems faced in this

project.



Chapter 2

Background Theory

In order to deploy a Rook cluster, it is necessary to gain some background knowledge

about containers, Ceph, Kubernetes, Rook and all the theoretical concepts related to

these, especially relevant to storage. In this section, these concepts are explained one

by one.

2.1 Kubernetes

Kubernetes is an open source system for managing containerized applications across

multiple hosts, providing basic mechanisms for deployment, maintenance, and scaling

of applications. The open source project is hosted by the Cloud Native Computing

Foundation (CNCF) [4].

The Kubernetes project started in the year 2014 with more than a decade of experi-

ence of running production workloads at Google with Google’s internal container cluster

managers (Borg and Omega). It has now become the de facto standard for deploying

containerized applications at scale in private, public and hybrid cloud environments.

The largest public cloud platforms AWS, Google Cloud, Azure, IBM Cloud and Ora-

cle Cloud now provide managed services for Kubernetes. An important reason for its

popularity is that a user does not have to change his/her application code for mak-

ing it run in a cloud. A Kubernetes user gets the freedom to decide as well as define

how the applications should run and communicate. The user is also allowed to scale

up/down services, perform rolling updates, switch traffic between different application

versions, and more. Kubernetes also offers different interfaces and platform primitives

for defining/managing applications.

4
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2.1.1 Kubernetes Architecture

On the high level, any application that runs on VMs can be deployed on Kubernetes by

simply containerizing its components. This is achieved by its core features; container

grouping, container orchestration, overlay networking, container-to-container routing

with layer 4 virtual IP based routing system, service discovery, support for running

daemons, deploying stateful application components, and most importantly the ability

to extend the container orchestrator for supporting complex orchestration requirements.

Kubernetes provides a set of dynamically scalable hosts for running workloads using

containers and uses a set of management hosts called masters for providing an API

for managing the entire container infrastructure as it can be seen in figure 2.1. The

workloads could include long-running services, batch jobs and container host specific

daemons. All the container hosts are connected together using an overlay network

for providing container-to-container routing. Applications deployed on Kubernetes are

dynamically discoverable within the cluster network and can be exposed to the external

networks using traditional load balancers. The state of the cluster manager is stored on

a highly distributed key/value store etcd which runs within the master instances.

Kubernetes scheduler that runs on master hosts will always make sure that each ap-

plication component is health checked, provided high availability, when the number of

replicas is set to more than one each instance is scheduled in multiple hosts, and if one of

those hosts becomes unavailable all the containers which were running in that host are

scheduled in any of the remaining hosts. One of the fascinating capabilities Kubernetes

offers is two level autoscaling. 1) First, it provides the ability to autoscale containers

using a resource called Horizontal Pod Autoscaler which watches the resource con-

sumption and scale the number of containers needed accordingly. 2) Second, it can scale

the container cluster itself by adding and removing hosts depending on the resource

requirements. Moreover, with the introduction of the cluster federation capability, it

can even manage a collection of Kubernetes clusters which may span over multiple data

centers using a single API endpoint.

2.1.2 Kubernetes Components

Kubernetes is composed of various software and hardware components. It must be

noted here that it is not dependent on any kind of hardware but some basic resources

are needed to provision the cluster. Following is a brief introduction of the components

relevant to this project.
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Figure 2.1: Kubernetes Architecture

• Containers

A container is a lighter version of virtual machine that is used to deploy appli-

cations. The programs, as well as its dependencies, are packed in one single file

and shared on the internet. So anyone can download the container and deploy

it on their infrastructure as per the requirement. Deployment is hassle-free with

just a little setup. In Kubernetes, Linux containers host the programs. These

containers are globally accepted and already have pre-built images. The images

can be deployed on Kubernetes.

The containers are capable of handling multiple programs. But it is recommended

to limit one process per container because it helps in troubleshooting. Updating

the containers is easy and the deployment is easy if it is small. It is better to have

many small containers, rather than a big one.

• Pods

Kubernetes has some unique features and one of them is that it does not run the

containers directly. It rather wraps up one or more containers into a pod. The con-

cept of a pod is that any containers within the same pod use the same resources and

the same local network. The benefit is that the containers can communicate with

each other easily. They are isolated but are readily available for communication.

The pods can replicate in Kubernetes. For example, an application becomes pop-

ular and a single pod is not able to sustain the load. At that moment, Kubernetes

can be configured for deploying new replicas of the pod as per the requirement.

But it is not necessary that replication occurs only during heavy load. A pod can
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replicate during normal conditions as well. This helps in uniform load balancing

and resisting failures.

Pods are capable of holding multiple containers but one should limit one or two

if possible. The reason is that the pods scale up and down as a single unit. The

containers within the pod must also scale together with the pods. Their individual

needs are not important at this stage. On the other side, this leads to wastage of

resources and expensive bills.

• Deployment

Although, pods are the basic units in Kubernetes but they are not launched directly

on a cluster. They are managed by more than one layer of abstraction. This overall

makes deployment. The main purpose is to declare the number of replicas running

at a time. When the deployment is added, it spins up the number of pods and

monitors them. Similarly, if the pod does not exist anymore, deployment re-creates

it. An interesting thing with deployment is that there is no need to deal with pods.

By declaring the state of the system, everything is managed automatically.

• Ingress

Once the cluster is made, it is time to launch deployments of pods on the clus-

ter. But how will a user allow external traffic to their application? As per the

concept of Kubernetes, it offers isolation between pods and the outside world. To

communicate with a service running within a pod, the outsider needs to open a

channel. The channel is a medium of communication and is known as ingress.

There are numerous ways for adding an ingress to the cluster. The most common

being through an ingress controller or load balancer.

2.1.3 Persistent Storage in Kubernetes

Containers by design are stateless entities. They are meant to be executed like a program,

that starts and eventually stops. But the applications that containers contain need

persistent (“stateful”) storage to store data, such as configuration data and databases.

It is only natural for users to demand persistent storage in Kubernetes clusters, and that

too without worrying about how it works under the hood [1].

Kubernetes solves this problem of persistence using Kubernetes Volumes. Applica-

tions that require persisting data on the filesystem may use volumes for mounting storage

devices to ephemeral containers similar to how volumes are used with VMs. Kubernetes

has properly designed this concept by loosely coupling physical storage devices with

containers by introducing an intermediate resource called persistent volume claims
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(PVCs). A PVC defines the disk size, disk type (ReadWriteOnce, ReadOnlyMany, Read-

WriteMany) and dynamically links a storage device to a volume defined against a pod.

The binding process can either be done in a static way using PVs or dynamically be

using a persistent storage provider. In both approaches, a volume will get linked to a

PV one to one and depending on the configuration given data will be preserved even if

the pods get terminated. According to the disk type used multiple pods will be able to

connect to the same disk and read/write.

Kubernetes provides a collection of volume plugins for supporting storage services avail-

able on public cloud platforms such as AWS EBS, GCE Persistent Disk, Azure File,

Azure Disk and many other well-known storage systems such as NFS, CephFS, Glus-

terFS, Cinder, etc.

2.2 Rook

Rook is an open source cloud-native storage orchestrator, providing the platform, frame-

work, and support for a diverse set of storage solutions to natively integrate with cloud-

native environments.

Rook takes storage software such as Ceph, Minio, CockroachDB etc and turn them into

self-managing, self-scaling, and self-healing storage services. It does this by automating

deployment, bootstrapping, configuration, provisioning, scaling, upgrading, migration,

disaster recovery, monitoring, and resource management. Rook relies on Kubernetes to

perform its duties such as container scheduling, management and orchestration.

Rook runs over top of Kubernetes cluster and, deploys and manages life cycle of Ceph

services as Kubernetes pods. Rook also provides support for different storage back-

ends other than Ceph such as Minio, CockarochDB etc, or one can also write its own

plugin/driver for Rook.

2.2.1 Rook Architecture

Rook uses Kubernetes operator [2] construct as its main management resource. That

means that it extends the Kubernetes API by adding additional application-specific

control to create, configure, and manage complex stateful Kubernetes pods and an

administrator just have to declare the desired state of their cluster. The state that

will be managed by the operator includes everything necessary to get the cluster up and

running and keep it healthy.
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Figure 2.2: Rook Architecture

With Rook running in the Kubernetes cluster, Kubernetes applications can mount block

devices and filesystems managed by Rook, or can use the S3/Swift API for object storage.

The Rook operator automates configuration of storage components and monitors the

cluster to ensure the storage remains available and healthy.

The Rook operator is a simple container that has all that is needed to bootstrap and

monitor the storage cluster. The operator will start and monitor Ceph monitor pods

and a daemonset for the OSDs, which provides basic RADOS storage. The operator

manages CRDs for pools, object stores (S3/Swift), and file systems by initializing the

pods and other artifacts necessary to run the services.

The operator will monitor the storage daemons to ensure the cluster is healthy. Ceph

mons will be started or failed over when necessary, and other adjustments are made

as the cluster grows or shrinks. The operator will also watch for desired state changes

requested by the api service and apply the changes.

The Rook operator also creates the Rook agents. These agents are pods deployed on

every Kubernetes node. Each agent configures a Flexvolume plugin that integrates with

Kubernetes’ volume controller framework. All storage operations required on the node

are handled such as attaching network storage devices, mounting volumes, and formating

the filesystem. [7]



Chapter 3

Project Details

This project involved evaluating Ceph deployments on Kubernetes clusters using Rook

and this needed to be done by taking into account CERN’s storage use-cases met by

Ceph. On the high level, this project can be divided into two parts: Deployment and

Development. This chapter covers all the deployment and implementation details start-

ing from deploying a Kubernetes cluster to deploying a full fledged Ceph cluster with

Rook.

3.1 Deployment

First thing that is needed before deploying a Rook cluster is a Kubernetes cluster. Rook

supports Kubernetes version 1.7 or higher, for this project version 1.10 was used. In this

project, cluster deployments were tested in both virtual as well as physical environments.

Details of both of these can be found in the following.

3.1.1 Virtual Environment

The virtual environment used for Kubernetes cluster deployment is OpenStack’s virtual

machines because cloud infrastructure at CERN is powered by OpenStack. In order to

deploy a new Kubernetes cluster on a bunch of virtual machines, an individual needs

to have access to OpenStack container orchestration engine (coe) that is provided by

OpenStack’s Magnum project.

Magnum is an OpenStack API service developed by the OpenStack’s containers team

making container orchestration engines such as Docker Swarm, Kubernetes, and Apache

Mesos available as first class resources in OpenStack. Magnum uses Heat to orchestrate

10
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an OS image which contains Docker and Kubernetes and runs that image in either

virtual machines or bare metal in a cluster configuration [5].

Following is a step by step guide on how to deploy a Kubernetes cluster using Openstack

Magnum at CERN:

• The easiest and most flexible way of carrying things forward is to deploy an Open-

Stack virtual machine and carry out rest of the operations from there. An open-

stack VM can be created from dashboard that can be accessed at openstack.cern.ch.

After logging into lxplus.cern.ch account, connect to that VM and install all the

necessary command line interfaces required for this project.

• Create a virtual environment and install python clients required. For this project,

we needed openstackclient, magnumclient, heatclient and kubectl:

> virtualenv /usr/test_rc/activate

> source /usr/test_rc/bin/activate

> pip install python-openstackclient

> pip install python-magnumclient

> pip install python-heatclient

> cat <<EOF > /etc/yum.repos.d/kubernetes.repo

[kubernetes]

name=Kubernetes

baseurl=https://packages.cloud.google.com/yum/repos/kubernetes-el7-x86_64

enabled=1

gpgcheck=1

repo_gpgcheck=1

gpgkey=https://packages.cloud.google.com/yum/doc/yum-key.gpg \

https://packages.cloud.google.com/yum/doc/rpm-package-key.gpg

EOF

> yum install -y kubectl

• We are ready to deploy our Kubernetes cluster now. At CERN, we have magnum

templates created for cluster deployments. Supported container orchestrators are

Kubernetes, Swarm, Mesos. These templates can be listed by doing a:
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> openstack coe cluster template list

-------+--------------------+

| uuid | name |

+------+--------------------+

| .... | swarm |

| .... | swarm-preview |

| .... | swarm-alpha |

| .... | kubernetes |

| .... | kubernetes-preview |

| .... | kubernetes-alpha |

| .... | dcos-preview |

+------+--------------------+

We choose Kubernetes template for deploying our cluster. It deploys fedora atomic

hosts of medium flavor, uses CERN’s gitlab registry for docker images and flannel

as a networking plugin for Kubernetes containers.

> openstack coe cluster create kuberook --keypair mykey \

--cluster-template kubernetes --node-count 2

Above command will start the creation process and after almost half an hour to

one hour a Kubernetes cluster will be ready with 2 worker nodes and one master

node.

• Next step is to source cluster credentials and start using it. This can be done as

follows:

> openstack coe cluster config kuberook > env.sh

> source env.sh

It would be good idea to see the contents of config file to get an idea of things

required to access a Kubernetes cluster. For instance, for above cluster, our master

node is running at 188.184.29.166 and its API server is listening on port 6443.

apiVersion: v1

clusters:

- cluster:

certificate-authority: /root/ca.pem

server: https://188.184.29.166:6443

name: kuberook
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contexts:

- context:

cluster: kuberook

user: admin

name: default

current-context: default

kind: Config

preferences: {}

users:

- name: admin

user:

client-certificate: /root/cert.pem

client-key: /root/key.pem

We can start using our Kubernetes cluster with kubectl now. It will automatically

authenticate with the API using credentials provided above. It is also good idea

to play around it with a bit such as listing namespaces, nodes, pods in different

namespaces etc.

Now that Kubernetes cluster is ready, we can go ahead and deploy our Rook cluster.

For that, we will have to clone Rook’s official repository. At the time of this project, it

was recommended by Rook’s community to use Rook’s version 0.8.0 because it offered

more features than previous versions and introduced Ceph’s beta version.

> git clone https://github.com/rook/rook.git

> git checkout tags/v0.8.0

In order to start a Rook cluster, the desired state of cluster is defined in YAML files.

Rook already comes with example YAML files that can be tweaked according to a user’s

needs. Deployments start with creating operator and then rest of the cluster with Ceph

services. One thing that needs to be changed before deployment is FLEXVOLUME plu-

gin path in operator.yaml because Rook uses FlexVolume to integrate with Kubernetes

for performing storage operations so overriding it with desired directory is mandatory.

In some operating systems where Kubernetes is deployed, the default Flexvolume plugin

directory (the directory where FlexVolume drivers are installed) is read-only. In these

cases, the kubelet needs to be told to use a different FlexVolume plugin directory that

is accessible and read/write (rw). It is done by updating a field in operator.yaml. If it

is not configured, rook-agent pods will crash and storage would not work.
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> cd rook/cluster/examples/kubernetes/ceph

Find the following lines in operator.yaml file and update the value with the path below:

- name: FLEXVOLUME_DIR_PATH

value: "/var/lib/kubelet/volumeplugins"

Now, we can deploy our cluster by doing:

> kubectl create -f operator.yaml

rook-ceph-system namespace should appear in Kubernetes cluster:

> kubectl get ns

NAME STATUS AGE

default Active 42d

kube-public Active 42d

kube-system Active 42d

rook-ceph-system Active 6d

and in that namespace, following pods should exist:

> kubectl get pods -n rook-ceph-system

rook-ceph-agent-cp8pm 1/1 Running 0 6d

rook-ceph-agent-qwnx8 1/1 Running 0 6d

rook-ceph-agent-rrpm5 1/1 Running 0 6d

rook-ceph-operator-6757648f75-n56sk 1/1 Running 0 6d

rook-discover-2svtc 1/1 Running 0 6d

rook-discover-7x6n8 1/1 Running 0 6d

rook-discover-czl59 1/1 Running 0 6d

Operator pod starts rook-agent and rook-discover pods on every Kubernetes node.

rook-agent configures storage plugin with kubelet and rook-discover pods discover

different disks and their partitions on every node. After these, rook-operator waits for

rook-ceph namespace to be created so that it can spawn the rest of Ceph services.

> kubectl create -f cluster.yaml

> kubectl get pods -n rook-ceph
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rook-ceph-mgr-a-bc965f98f-6f589 1/1 Running 0 6d

rook-ceph-mon0-ftkqr 1/1 Running 0 6d

rook-ceph-mon1-w6rs7 1/1 Running 0 6d

rook-ceph-mon2-vrk9c 1/1 Running 0 6d

rook-ceph-osd-id-0-655b6fd69-f9tb9 1/1 Running 0 6d

rook-ceph-osd-id-1-f7989966c-259kd 1/1 Running 0 6d

rook-ceph-osd-id-2-5f5dd7c474-spdz4 1/1 Running 0 6d

rook-ceph-osd-prepare-minion-0-qf6z8 0/1 Completed 0 6d

rook-ceph-osd-prepare-minion-1-m2v5b 0/1 Completed 0 6d

rook-ceph-osd-prepare-minion-2-xl5sp 0/1 Completed 0 6d

Rook deploys monitor pods according to the specifications in operator.yaml.

rook-ceph-osd-prepare pods get deployed on every Kubernetes node and are respon-

sible for detecting devices and partitioning them. Their state is meant to be Completed

because their sole job is to prepare the nodes for OSD deployment. Currently, only one

mgr pod can be deployed with Rook but more will be supported in future releases. Rest

of the example YAML files are available and can be used to deploy filesystem and object

store.

3.1.2 Physical Environment

Physical environment used for this project consisted of bare metal hosts managed by

OpenStack Ironic [3] because it is the primary source of provisioning and maintaining

bare metal at CERN. Each node consisted of more than 50 disks with each disk having

5.5 TB of disk space. Rook deployment process on these bare metal nodes is the same as

in virtual environment, except for initial configuration. The initial configuration is not

required when a new cluster is being deployed on on ironic nodes, but in this project,

ironic nodes were added to a running cluster i.e. cluster running in virtual environment

was extended by adding more Kubernetes nodes but now these Kubernetes nodes were

bare metal machines instead of virtual machines. This was done by creating a stack

in Ceph Ironic project and providing Kubernetes’s master node credentials to worker

nodes in this new stack. Rest of the details can be found in the README file.

3.2 Orchestrator CLI

One of the major aspect of this project was to use orchestrator command line interface

and explore what it had to offer. Orchestrator CLI is an extension to Ceph MGR
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daemon and it brings orchestration functionality to Ceph so that Ceph does not have

to be dependent on external orchestrators. It also makes it easy for people who are

already familiar with Ceph CLI to perform orchestration tasks through same interface.

Currently, it offers following functionality:

• It can list devices on nodes

• It can check its own status

• It can add services to running cluster e.g. it can add OSDs on specific nodes, MDS

to specific filesystem and RGW to objectstore.

• It can get status for running services (OSD, MDS, RGW)

In order to start using orchestrator CLI, some additional steps are required.

• Ceph operations can be performed easily by deploying rook-ceph-toolbox pod

and accessing CLI from there. All the basic tools are already installed there.

> kubectl create -f toolbox.yaml

• Connect to that pod and start using Ceph CLI.

> kubectl -n rook-ceph exec -it rook-ceph-tools bash

> ceph -s

• Orchestrator CLI module is not enabled by default so it needs to be explicitly

enabled and its backend is also needed to be set.

> ceph mgr module enable orchestrator_cli

> ceph mgr module enable rook

> ceph orchestator set backend rook

• It is enabled now and ready to use. Following is an example of how can an OSD

be added on a certain drive:

> ceph orchestrator device ls

> ceph orchestrator service add osd rook-ironic-node:sdb

Success.

> ceph orchestrator service status osd 0

It must be noted here that these operations of adding services are asynchronous

that is Success message does not guarantee that OSD pod has been created in

cluster. An important thing to mention here is that OSD would not be added to

cluster if cluster level storage is used instead of node level. These settings can

be found in operator.yaml.
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3.3 Development

If the contents of operator.yaml are observed, it can be seen that the name of docker

image used for operator deployment is rook/ceph by default. This is the same image

that is used for deployment of rest of the Ceph pods as well, meaning that this one

docker image has Rook as well Ceph binaries. On the system where Rook is built,

it should be outputting an image with a name like <some hash>/ceph-amd64 (visible

in docker image ls) – this corresponds to rook/ceph:v0.8.0 (the friendly tag only

gets applied when pushing it to a repository). Docker image naming can be confusing,

because the real identifier of an image is its hash, and the names we refer to are specific

to a repository (or to person’s local system).

That default rook/ceph:v0.8.0 image contains Ceph binaries from the luminous re-

lease, which are downloaded as RPMs by the Rook build process.

containers:

- name: rook-ceph-operator

image: rook/ceph:v0.8.0

3.3.1 How to build Rook?

In order to build Rook locally, two things need to be ensured 1) Go lang is installed 2)

Paths for Go are correctly set. After making sure these two requirements are met, check-

out to Rook’s branch, for this project release-0.8 was checked out with tag 0.8.0. Then

do a make in Rook’s directory. If any kind of errors are faced refer to the troubleshooting

section in the end.

After successful built of Rook, following docker images should be seen:

> docker images

build-6d4fb/minio-amd64 latest a124380bf386 9 days ago

build-6d4fb/cockroachdb-amd64 latest 428caee3814e 9 days ago

build-6d4fb/ceph-amd64 latest aaf02ee8dada 9 days ago

build-6d4fb/ceph-toolbox-amd64 latest c3eed29fb85e 3 weeks ago

build-6d4fb/ceph-toolbox-base-amd64 latest dec5c1d0db82 3 weeks ago

The image that is of our interest is build-6d4fb/ceph-amd64. Development workflow

from now onwards might vary from environment to environment, but for this project
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the development environment was distributed. What that means is Rook and Ceph

were built on two separate machines and then combined together in one image. In order

to use this image build-6d4fb670/ceph-amd64 for injecting our desired Ceph binaries

instead of ones released by Rook’s official repository, we have to push this image to a

docker repository. This project used docker hub as image hosting site. One important

think to mention here is at the time of this project, the Orchestrator CLI needed some

privilege from Rook’s side which was not merged so this patch here [8] was applied.

> docker image tag build-6d4fb/ceph-amd64 <username>/ceph-amd64:<version>

> docker push image <username>/ceph-amd64:<version>

It needs to be ensured that our system can push to a certain repository on docker hub

and also, that repository should exist in docker hub. For instance, in above example,

<username> should exist on docker hub and it should be public. If it is not public, some

extra steps are needed for setting up the credentials. Alternatively, any image hosting

site could have been used e.g. CERN has its own private registry as well hosted on gitlab

or if Rook and Ceph are built on the same system then using a local docker registry

would be convenient. This whole process of Rook build was carried out on the same

virtual machine that was created for accessing and deploying cluster.

3.3.2 How to build Ceph?

After our Rook and Ceph image becomes available for use, we turn to Ceph side. This

step was needed because we wanted to use current Ceph master branch, not the one

released by official Rook. As mentioned earlier, one vital aspect of this project was to

use orchestrator command line interface and it was available in Ceph’s master branch.

It should be also noted here that when this project was initiated, orchestrator CLI code

was still in development phase and not in master branch so some additional steps were

taken to make it stable but these steps are not required now as code has been merged

into master branch of Ceph. Initial step to generate Ceph binaries of our interest is to

build Ceph and that process is same as traditional Ceph build process i.e.

> git clone https://github.com/ceph/ceph.git

> ./install_deps

> ./do_cmake.sh

> make -j(NO_OF_PROCESSORS)

After getting a successful build of master branch, we have our Ceph binaries to re-

place in build-6d4fb/ceph-amd64 docker image. This process has been simplified by
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kubejacker.sh script found in ceph/src/script/kubejacker. It will take that same

image and overwrite the Ceph binaries with those from a local built tree. The only

thing that needs to be added are REPO and BASEIMAGE environment variables in

that script according to the development environment being used. For our case, it was

like that:

REPO=<username>

BASEIMAGE=REPO/ceph-amd64:<version>

IMAGE=ceph

and the last three lines where pods are being killed needed to be commented out be-

cause cluster is not accessible from this machine. TAG can be set according to your

desire and this IMAGE:TAG is the same name as used in operator.yaml. We run our

kubejacker.sh script from ceph/build directory and the respective docker image

will be pushed to docker hub. The host used for this purpose was cephbuild.cern.ch.

3.4 Teardown

Tearing down cluster is a simple process but the order of commands needs to ensured

otherwise pods can get stuck in TERMINATING state for long. Following is a step by

step guide on how to do that:

• First of all delete all the file and block artifacts deployed in the cluster:

kubectl delete -n rook-ceph pool replicapool

kubectl delete storageclass rook-ceph-block

kubectl delete -f kube-registry.yaml

• After that, delete rest of the cluster by removing cluster CRD:

kubectl -n rook-ceph delete cluster.ceph.rook.io rook-ceph

This will clean up the cluster if rook/ceph:v0.8.0 is being used but since our

project is using custom docker image, we will need to do a:

kubectl delete -f cluster.yaml

to delete all the resources in our cluster.

• In the end, rook operator and agent need to be cleaned up.
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kubectl delete -f operator.yaml

• One important step in teardown process is to delete config files from Kubernetes

nodes manually because config files and data on nodes remain persistent. For

that, log into Kubernetes nodes and delete /var/lib/rook or whatever hostDir

was configured in operator.yaml. Also, if OSDs were deployed then partitions of

disks need to be deleted manually as well. If these two steps are not taken, next

deployment would find these directories to be non-empty and fail. Partitions and

data on disks can be deleted in multiple ways, following is just one approach:

> sudo rm -rf /var/lib/rook

> lsblk

> sudo fdisk /dev/<disk-name>

then follow the process for partition removal.



Chapter 4

Evaluation and Results

This chapter covers two things: 1) evaluation criteria established to determine if deploy-

ments with Kubernetes and Rook address our pain points or not 2) results of evaluations.

4.1 Evaluation Criteria

Our main concerns are latency of Ceph operations, automation of Ceph upgrades and

autoscaling. Formalizing these requirements into evaluation metrics, we have:

• Time to deploy whole Ceph cluster

• Time to add new OSDs in a running cluster

• Autoscaling: adding/removing S3/CephFS daemons (MDS, RGW, OSD)

• Ceph upgrades: how much is it automated?

After establishing our Ceph cluster with Rook and Kubernetes, S3 workloads were de-

ployed to test the deployments.

4.2 Results

Currently, Ceph is being deployed at CERN using puppet which takes time and its

configuration requires expertise. Following table shows comparison between current

time taken by puppet and then time taken by Ceph deployment using Rook.
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Evaluation Metric with Puppet with Rook and k8s

Time to deploy whole cluster > 3 hours < 15 minutes
Time to add new OSDs in a cluster > 1 hour < 2 minutes
Autoscaling S3/CephFS daemons > 1 hour < 2 minutes
Ceph upgrades Manual Manual (WIP)

It is evident from above table that Rook with Kubernetes improves latency of operations

significantly. Previous Ceph operations that were taking hours can now be achieved in

minutes. An important point to note here is that although upgrades are still manual

in Rook, since Ceph services are running in containers, the process is less involved as

compared to the previous version.

In addition to being time efficient, it is failure tolerant i.e. when a pod crashes rook-operator

respawns it with the same configuration. It is also elastic in a sense that a user just have

add more resources in the cluster and rook-operator will acknowledge those resources

and start using them.



Chapter 5

Conclusion and Future Work

In summary, this project aimed to explore a new approach to improve Ceph operations at

CERN. Owing to the huge infrastructure of CERN, making operations faster and easier

have always been a priority. Rook looks like a promising open source project that targets

to make storage better for cloud. Although CERN does not have production servers

running Kubernetes yet, but container based approaches are being actively explored

here and soon we would have Kubernetes clusters in production as well. The results

of this project verify the future for container based solutions. One important thing to

mention here is that although Ceph operations are improved in terms of latency and ease

of use, Ceph managers will need to learn how to operate a Kubernetes cluster and since

Rook is comparatively a newer technology, all the storage use cases are exhaustively not

covered as yet.

This project also contributed open source code to Ceph and added RGW support in

orchestrator CLI but there are still many features that need to be added, for instance,

following two are next priority:

• Making RGW support a two way thing in which it waits for completion

• Currently, a user cannot remove services from orchestrator CLI so adding the

functionality to remove services will come in handy.

All in all, it will be a good idea to spawn the next Ceph cluster with Rook and Kuber-

netes, ideally when features like automated upgrades and support of decoupled versions

are achieved.
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Chapter 6

Appendix

6.1 Troubleshooting

• Namespace stuck in Terminating state:

If a namespace is still stuck in terminating stage after cluster was brought down

then make sure all the resources in that namespace have been deleted. If a pod is

still running, do a:

> kubectl -n NAMESPACE get pods

> kubectl delete pod POD -n NAMESPACE --force --grace-period=0

If the issue still persists then look for cluster CRD, if it is there go ahead and

delete it:

> kubectl -n rook-ceph get cluster.ceph.rook.io

> kubectl -n rook-ceph edit cluster.ceph.rook.io rook-ceph

Delete the line - cluster.ceph.rook.io from the file. After few seconds, names-

pace should be deleted [6].

• Docker containers are unable to access internet

When kubejacker.sh script is being used to build docker images on cephbuild.cern.ch

host, containers were unable to access internet. Add nameservers to /etc/resolv.conf

and restart docker daemon.

> cat /etc/resolv.conf

# Generated by NetworkManager

search cern.ch

24
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nameserver 137.138.17.5

nameserver 137.138.16.5

nameserver 2001:1458:201:1100::5

> service docker restart

• OSD pods are not getting launched in virtual environment:

Check for disk space of volumes that you are attaching to virtual machines. It

should be greater that 10 GB.

• Inter node pod connectivity issue:

If inter node connectivity is lost it would most probably because of misconfiguration

of kube-proxy. Do this on each Kubernetes node:

sudo su

cat > /etc/kubernetes/proxy <<EOF KUBE_PROXY_ARGS="

--kubeconfig=/etc/kubernetes/proxy-config.yaml

--cluster-cidr=10.100.0.0/16" EOF

systemctl restart kube-proxy.service

The cidr value comes from here: openstack stack show rook-ironic-nodes –no-

resolve-outputs — grep pods network cidr. If there is a pod that still is not ac-

cepting traffic, execute this command to allow traffic to that node:

> sudo iptables FORWARD ACCEPT
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