Real -Time Server Monitoring and
CNN Inference on FPGA

2019

August

AUTHOR:

Debdeep Paul

Experimental Physics-Neutrino Group (EP-UNU).

SUPERVISOR:
Paola Sala

Experimental Physics-Neutrino Group (EP-UNU).

=¥, CERN

= openlab



[
CERN Openlab Report // 2019 ?

PROJECT SPECIFICATION

L _E XN NEEN KRN NEN NXEN JEEN NEN JSNEN JXJEN JEEN NJEN KN NI

The Deep Underground Neutrino Experiment (DUNE) is a leadirgplge, international experiment

for neutrino science and proton decay studiebuilt in the United States, hosted by Fermi National
Accelerator Laboratory (Fermilab). The protoDUNEteam in CERNhas builda prototype of these
chambers to test and validate the technologies and design that will be applied to the construction of
the DUNE Far Detector at the Sanford Underground ResearcicHigy.

Recent years have seen a lot of popularity of Deep Learnirgnongthe High Energy Physics
community. Presently, the ERUNU group is investigating variousiew algorithms for data
acquisition and event selection for the DUNE neutrinexperiment for understanding and analyzing
the different neutrino interactions. Since FPGA provides the best tradeff in terms of power and
hardware parallelism, our team has been trying to use FPGA based solutions for CNN inference.

The major goal of this project isoutlined as follows:

- Develop alightweight web-based monitoring dashboard for the servehosting the FPGA for
running the CNN Inference.

- Compare the performance of the CPU and FPGA for CNN inference in ternacofiracy,
power and latency.

- Look into the problem of numerical overflow created as a result of using fixed point
airthmetic during CNN Inference on the FPGA.
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ABSTRACT

L _E XN NEEN KRN NEN NXEN JEEN NEN JSNEN JXJEN JEEN NJEN KN NI

Neutrinos are subatomic particles, very similar to an electron, but without any electrical charge and
a verynegligible restmass.They arethe most abundant and perhaps the most mysterious matter
particles in the universe!

Detecting and tracking neutrinos poses a different challenge boin terms of hardware and
algorithms. Sincethey have very little interaction with matter, they are incredibly difficult to detect.
So,every hit of information produced bythe neutrino interactions is required to bestored and
analyzed at anincredible fast rate.

Present day Stateof-the-Art Convolutional Neural Networks (CNNs) have shown an uprecedented
accuracy on many modern Al applications. They have become the-fdeto standard for a wide range
of tasks ranging from computer vision tanachine translation dueto their high accuracy and
robustness.

Research has proved tha€NNSs also hold the potential to excel in High Energy Physics (HEP)
applications as compared to traditionaimethodsin identifying particle interactions in sampling
calorimeters or Time Projection ChambersHowever, these algorithms are both computationally
and memory extensive which limits them from running on normal CPU for redalme and power
constrained applications.Thus, awistomized hardware implementation of machine learning
algorithms can bea promising solution for higher performance andimproved throughput.

Another important aspect is to constantly monitor the server which hosts the FPGAs for the CNN
inference and sent alert messages in crucial situations.

This project involved the development of a lightweight, easy to use solution ftine server
monitoring so that all the important metrices can be visualized at a glance in retime. Secondly, to
compare the CNN inference between the server and the FPGA in terms of accurpower
consumption and latency. The project also focuses onaéeg with the numerical overflow problem
due to fixed point computations in FPGA during CNN inference.

Keywords: Proto-DUNE,Real-Time Server Monitoring, Convolutional Neural Network, FPGA,
Fixed Point Computation .



CERN Openlab Report // 2019

TABLE OF CONTENTS

L _ A NN ENXN NEN HREN JEXN JEEN NREJN JEXN JXJEBN JEJNN JNK&EN JNXJEN JN]J

INTRODUCTION

PART A: REAL-TIME SERVER MONITORING

TOOLS USED
1 PROMETHEUS
1 INFLUXDB
1 CHRONOGRAF
1 GRAFANA

THE MONITORING FRAMEWORK

THE MONITORING DATABASE

THE MONITORING WEB-SITE

GRAFANA DASHBOARDS

i THE HOME DASHBOARD
1 CPU CORE TEMPERATURE DASHBOARD
1 MONITORING THE CNN INFERENCE PROCESS

ALERTING

Real-Time Server Monitoring and CNN Inference on FPGA

07

07

07
08
08

10

10

10
11
11

5

[ X XN JREEN NXXEN JREJEN JREN JREEN NXEN JEI REIN NXEN JREE NEN NXNEN REREN JREN JXXT REEX KXNXN JNEN NEN NEN NEEN NEEN XX)



CERN Openlab Report // 2019

TABLE OF CONTENTS

L _ A NN EEN NEKEN NEN NEEN JSEXBE NJEJN JSJEBJR JKJEN JE-E-N NEJENR NN _JH}N]

PART B: CNN Inference on FPGA

CONVOLUTIONAL NEURAL NETWORKS 13
FPGA 13
L SN T ERENCE ON P e
L S S S
O O S S
O N o
FIXED POINT COMPUTATIONS 16

1 THE NUMERICAL OVERFLOW PROBLEM 17

1 POSSIBLE SOLUTIONS 17
e S o
e S o
A R S o
REFERENCES 21

Real-Time Server Monitoring and CNN Inference on FPGA

6

[ X XN JREEN NXXEN JREJEN JREN JREEN NXEN JEI REIN NXEN JREE NEN NXNEN REREN JREN JXXT REEX KXNXN JNEN NEN NEN NEEN NEEN XX)



Real-Time Server Monitoring and CNN Inference on FPGA

[
CERN Openlab Report // 2019 ?

| NTRODUCTI ON

RealTime monitoring of servers running crucial applications are animportant part of any major
data-center or research organization. This makes a simple, lightweight amdsyto -use webbased
monitoring tool in huge demand. Itensures monitoring all the system resources associated with the
server to understand their resource usage patterns and optimize them accordingly to provide a
better end-user experience.

Recent advacement in the fields of Deep Learning has proven that Deep Convolutional Neural
Networks (DCNN) can achieve human level accuracy, sometimes even exceeding in classification
tasks.Research has shown that they have the potential to outperform traditionakatistical based
methods in High Energy Physics as well.

This project is divided into two parts: At first, we develop a solution for realtime server monitoring,
and in the second phase, we have investigated the use of CNNs for understanding the Neutrino
interactions in the Liquid Argon Time Projection Chambenf the proto-DUNE Experiment.

PART A: REAL-TIME SERVER MONITORING

L _E XN NEEN JNEEN NEEN JXHEN JREN NEN JXEN NXHJEN JEEN JNEN KN NI

The goal of thisfirst part of the project was to develop a web interface dashboard to seamlessly
monitor the performance of the server(np04-srv-102) hosting our two FPGAsat a glanceand to
report any abnormalities immediately for any further action. The dashboard will include an overview
of all the important metrices like CPU, Memory, Disk, Network and also our custom parameters like
CNN Inference time, data load and processing timppwer consumption and detailed CPUcore
temperatures.

1. TOOLS USED

Prometheus is a standalone open source monitoring and alerting toolkit. It is highly customizable
and designed to deliver rich metrics without creating a drag on system perfornmece. Though
originally built at SoundCloud since its inception in 2012, many companies and organizations have
adopted Prometheus, and the project has a very active developer and usemmunity.

Prometheus works well for recording any purely numeric time seriesMost Prometheus
components are written in Go while some are also written in Java, Python, and Rulbyaushes
metrics over http rather than pulling. Prometheus also facilitates sending alerts using Prometheus
Alert-Manager.

Prometheus has a main central component calld@rometheus Server which is responsible for
scraping the metrics (fore.g.current CPU status, memory usage, etc) from the targets (which can be
an entire Linux server, a stanealone Apache server, a single poess or a database servicet a


http://home.cern/cern-people/updates/2016/06/new-wings-give-icarus-flight-second-neutrino-hunt
https://soundcloud.com/
https://prometheus.io/community
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user-defined interval. These can thete stored in a timeseries database locally or remotely and
displayed back in the Prometheus server.

The PrometheusNode Exporterexposes a wide variety of hardwareand kernelrelated metrics. It
facilitates easy means to measure various machine resources such as memory, disk and CPU
utilization.

Figure 1 illustrates the architecture of Prometheus and some of its ecosystem components:

2 ?
( Service discovery Prometheus \
H Shotfived ] alerting -| pagerduty ‘
. e > kubernetes file_sd il —
push meteics L < ] Alertmanager - 4 Email |
atexit )
} discover
¥ targets * notify
etc
Pushgateway Prometheus server
push
H 3 1 algrts
Eopull | L.| HrTP
m:trlcs Retrievas J { TsoB J [ server } """"""""""""""
! PromQL
Q o] Prometheus
web Ul
.~ pe— i
‘ ' Jobs/ | Node i Grafana Data
‘ exporters ’ }'é visualization
4 and export
Prometheus
targets
Figure 1. Prometheus Architecture.

1.2 INFLUXDB

InfluxDB is anopen-sourcetime series databaseleveloped by InfluxData. It is writtenin Goand
optimized for fast, high-availability storage and retrieval oftime seriesdata. This includes APIs for
storing and querying data, processing it in the background fanonitoring and alerting purposes,
user dashboardsvisualizing and exploring the data and moret is widely usedin fields such as
operations monitoring, application metrics, Internet of Things sensor data, and reatime analytics.

1.3 CHRONOGRAF

#EOITTT COAE EO )1 £ 0% AOA Ghiondge fatilita®dd qhickAnll easyA A ADDI EA.
visualization of the data thatis stored in InfluxDB to build robust queries and alerts

1.4 GRAFANA

Grafana isone of the most widely used visualization tools when it comes to timseries data
analytics. Grafana allows to query, visualize anehderstand the metrics from any time-series
database by numerous dynamic & reusable dashboar@sntaining a wide range of gaphs, charts
and other plugins.

Real-Time Server Monitoring and CNN Inference on FPGA 8
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It also allows to seamlessly define alert rules and thresholds for the most important metrics.
Grafana will continuously evaluate and send notifications to systeniike Slack, email, Telegram, etc.

2. THE MONITORING FRAMEWORK

The server monitoring framework is depicted in Figure2 .

g Prometheus i @ inﬂUde
J dbod-micron-project-monitaring.cern.ch

Pythow scripty to- Q{"*‘
scrape metvics
- CoveTemperaturey £ OPENSHIFT
CPU Usage
Memory Usage ; P—
Inf?zrev]f&T&ww @G
Networl
by rafana
- Other Staty | Bl https://micron-project-
monitoring.web.cern.ch
Figure 2. Server Monitoring Framework using Prometheus, Influxdb and Grafana.

First, we write python scripts to scrape the metrices which we want to monitarThe basic hardware
and kernelrelated metrics can be scraped easily through therometheusnode-exporter client. We
only write scripts to scrape the custom parameters which we want to monitor.

The metrices areexported through a dedicated http port.The Rometheus server collects metrics
from targets (over HTTP)and stores them locallyin the server itself. These metrices can be
displayed in the local browserthrough the port (by default Prometheus server uses pord090:

htt ps://localhost:9090) .

We also export all the metrices to a remote database @ERN DBD (Database on Demand¥erver.
We have chosen InfluxDB as firovides one of thebest standardsand is most widely used for time-
series databass.

The nextstep was to create a welpage so that we cawisualize our data through it. We host
Grafanadashboardson the web-pageand visualize the metrices by creating different graphs and
charts.

The different graphs and dashboards on our website are explained in the later sections.

3. THE MONITORING DATABASE

We created our remote InfluDB database using CERMtabaseon Demand (DBoD) serviceCERN
DB On Demand offers seamlessway to create and manage database$.also allows users to

Real-Time Server Monitoring and CNN Inference on FPGA
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perform tasks that are traditionally carried out by database administratordike operating system
and database engine updates, access to backup and recovery services and some support for service
continuity in case of hardware failure We got a database of size 300GB in CERN server.

4. THE MONITORING WEB-SITE

We have created andhosted our website (https://micron -project -monitoring.web.cern.ch ) on
the CERN central web servers using CERN wseérvices.We created a PaaS (Platforras-a-Service)
web-application which enables @ployment of small web applicationsas Docker containers in an
Openshift cluster.

We run our owndedicated Grafana instance in central web servetirough which we visualize the
different metrics by quering the InfluxDB database.

5. GRAFANA DASHBOARDS

The Grafana home dashboard contaiall the basic parameter of CPU, Memory, Disk and Network
usage A screenshot of the Grafana home dashboard is shown in Figure 3.

For each of CPU, Memory, File System, Network and 1/0 we have separate panels in our main
dashboard whichshowsthe details of each of them. All these metrics are being displayed by
querying the InfluxDB database through Grafana.

We also have our custom mtrics for the CNN inference and detailed CPU core temperatures and
power in separate dashboards which is explained in the next section.

{9 88 Node Exporter -

Used RAM Memary

Basic CPU / Mem / Disk Info

CPU Cores Total RAM otal SWA Total RootFS Sys oad 1avg) Uptime

48 191.898 GiB 995 GiB 3.6 hours

Basic CPU / Mem Graph

.44 MiB
189.03 MIB
+Buffer:  232.31 MiB

Figure 3. Grafana Home Dashboard for Server Monitoring.
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One of the main concerns about the server was the temperature of the CPU cores when training or
inference was running for days. So we created a separated dashboard which had a detailed view of
temperatures ofall the 24 real cores of the server and also th average socket temperatures at a
glance.Figure 4 shows a view the dashboard.

88 np04-102_monitoring -

CPU Core Temperatures

Socket 1

Core 10 Core 11

Core 10 Core 11

Figure 4. CPU Core Temperature Monitoring Dashboard.

The main objectivebehind the server monitoring was to study the important server metrics like
temperature, memory, disk, etc. while the inference was running. We created a separate dashboard
in Grafana to highlight trese paraméers (Figure 5).

{9 88 KerasInference -

Keras Inference

Inference Running Core Temperature Socket 1 Core Temperature Socket 2 Total Memory Usage

[is u o !
1000 0at0 00

ce Code Running e 29 ference Running Current 6 ® Current 32 == Inferen: arent: 6 n usl_memory.bytes mean

Average Inference Time Data load time from disk Data pre-processing Time

Figure 5. CNN inference Monitoring Dashboard (using Keras).

The spikes in the first graph highlights the time istances in which the inference code was called
from the command line. The next two graphs highlight the overall temperatures of the 2 sockets in
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the CPU, each containing 12 cores. The green continuous curve represents the temperature and the
yellow spikesrepresents the instances at which inference was running. The rise is core
temperatures during the inference can be observed from the graphs. The fourth graph in the figure
shows the memory usage of the inference process.

We also monitor the exact time requiredor inference, data loading and datgrocessing for
comparing the CPU performance with GPU and the FPGA. These are represented in the last three
graphs respectively.

The average time required for the various processein the CPU are shown ifiable 1 in Section11.

6. ALERTING

An important aspect ofmonitoring i s sending alerts to the concerned persons when any of the
parameters exceeds its threshold.

We have configuredGrafana to send alerts via emailhis isdone bycreating analert channelin
Grafana and therconfiguring the smtp settings inthe Grafana cusbm.ini file.

P A SMTP | Emailing s
[smtp]

enabled = true

host = cernmx.cern.ch:25

user = dpaul

# If the password contains # or ; you have to wrap it with triple quotes. Ex ""#password;""
password = *xxxx

cert_file =

key file =

skip_verify = true
from_address = debdeep.paul@cern.ch
from_name = Debdeep Paul

ehlo_identity =
S e e e e e e e s e

The next step is to define the alerting rules in Grafana. This is dobg going back to the dashboard
and setting up the thresholds and the custom messages from each of the graphs where an alert is
required.

We can also send SMS notification to the concerned user by the CERN sms via email service. This
service allows to sendree of charge short messages to CERN G3Msending email to the
following address: +4175411xxxx@mail2sms.cern.clixxxx is last 4 digits of the GSM).

Real-Time Server Monitoring and CNN Inference on FPGA 12
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PART B: CNN Inference on FPGA

This part of the project involved running the CNN inference on the CPU as well as the FPGA for
comparison of their performance Also, it focuseson investigating into the numerical overflow
problem resulting due tofixed-point computations during the CNNnference on the FPGA.

We first give a brief description of CNN and the FPGA inference framework and then focus on the
problems and the solutions which wedealt with.

7. CONVOLUTIONAL NEURAL NETWORKS

Convolutional Neural Networks (CNN) are a class dkeep, feedforward artif icial neural
networks (ANN), which are most popularly used in image clagstation, object recognition
and similar tasks. They are particularly best suited for operation on 2D input data such esages.

conv2 feature maps
convl feature maps 14x14x32
28x28x16

pooll feature maps

14x14x16 OUT: 10

|
convolution max-pool max-pool Full connection }
(=5, F=16, 5=1) (=2, 5=2) (k:;";:'ﬂ‘gnusll) (k=2, 5=2) Full connection

Figure 6. A typical CNN Architecture.

Research has shown thaCNNs are well suited to a broad class of detectors used iighlEnergy
Physics (HEP). In our project, we have also been trying to implement CNN to study and analyse
different particle interactions in our Proto-DUNE deéctor. Each of these detectors (Single Phase and
Dual Phase) is a 10x10x1®netre Liquid Argon Time Projection Chambey containing about 800
tonnes of liquid argon.

We record theelectrical signal released by ionising particles crossing the detectdwy a 3
dimensional electrode structure.When these signalsare combined, they result in what is essentially
an image of the physics interaction that takes place within the chambéFhese captured signals are
fed into neural networks for studying different interactions.

8. FPGA

Field Programmable Gate Arrays oFPGASs are programmable
logic devices which are used forapid prototyping of complex
digital systems.FPGAs are prdabricated silicon chipscontaining

a matrix of Configurable Logic Blocks (CLBs comprising of flip -flops,
LUTs, multiplexersetc) and I/Os connected via programmable
routing. Most modern FPGASs also contain a heterogeneous
mixture of different blocks like dedicated memory blocks and
DSP Blocks. &

Figure 7. Field Programmable Gate Array.
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FPGAs catbe configured by a designer after manufacturinghence the term field programmable”.
The FPGA configuratioris generally specified using daardware description language

Once the HDL model is verified, the description is synthesizethd mapped into the FPGA by special
tools and softwaresprovided by the manufacturer.

FPGA9rovides the perfect tradeoff between the flexibility and programmability of software
running on a generalpurpose CPU and the speed and power efficiency of a custom designed
Application Specific Integrated Circuit (ASIC).

CNN algorithms areinherently highly parallelizablein nature and FPGAs are designed to handle
irregular parallelism and fine-grained computations which makes them the preferred solution for
CNN deployment.

9. HIGH LEVEL SYNTHESIS (HLS)

High-level synthesis(HLS) is an automated design process that intprets an algorithmic
description of a desired behavior and creates digital hardware that implements that behavior.

HLSstarts with an algorithmic description in a high-level language such as SystemC and ANSI
C/C++. The higHevel synthesis tools handle the micrearchitecture and transforms the code into
RTL implementations The RTLimplementations are then used directly in a anventional logic
synthesis flow to create a gatdevel implementation. HLS greatly reduces the intellectual property
(IP) development cycle from months to weeks.

10. CNN INFERENCE WORKFLOW

A typical Neural Network deployment consists of two phases: Traing andInference. Training
involves both forward and backvard passes to learn the weights and biases and naturally is more
compute extensive than inferenceOur Neural Network was trained using a GPWsing our proto-
DUNE dataset comprising of 13 Million irages. The model architecture and the weights were saved
in h5 format.

Our server hoststwo FPGAs whichaere accessible throughthe PCI slots
1 Micron SB-852

SB852 is a fultheight, GPUJength, PCle x16 Gen3 board
designed to deliver unprecedented levels of higlvandwidth
and low-latency performance. It is equipped with a
Xilinx® Virtex Ultrascale+ FPGA, a 2GB Hybrid Memory Cube
(HMC), up to 512GB of higiperformance memory and

two QSFP28 connectors.

Figure 8. Micron SB-852.
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T Micron AC-510

The Micron AG510 features a Xilinx Kintex®UltraScale060
FPGA with Micron high-bandwidth Hybrid Memory Cube(HMC)
It features a bandwidth ofup to 60 GB/s and also supports

| DAT #, A AEOAI Ax1 OE A IFdarhe@ork E OFE
for efficient acceleration of demanding applications.

Figure 9. Micron AC-510.

To run the CNN nferenceon the FPGA# is required to export the bit-file to the FPGA for mapping
the hardware architecture onto the FPGA. This biile is generated by the Micron ForwardNext
library . This library takes an ONNX model as input and generates the-stream. ONNXor One
Neural Network Exchange formatis an open format to represent deep learning modelaimed to
allow framework inter -portability between different machine learning libraries. The CPU can
communicate to the FPGA via the PCI slots of the motherboaifithe entire flow-chart is represented
in Figure 10.

Keras

N\
)
\

Ten:g:o-{{ O PyTOI'Ch \T‘

Figure 10. CNN Inference Workflow.

11. FPGA VS CPU FOR CNN INFERENCE

The Neural Network was trained on a subset of our DUNEataset We used aslightly modified

version of theResNet18 Network for our classificationwith one softmax output over 13 values
corresponding to the 13 types of neutrino interaction considerednd saved the weights. We tested
the inference both on theCPU and the FPGAhe server (CPU) contains a Intel Xeon Silver 4116, 2.1
GHz Processor with 195237MB)DR4RAM.

Real-Time Server Monitoring and CNN Inference on FPGA 15
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Table 1 summarizes the inference time in the CPU and Table 2 on the Micron FPGA 510.

Process Average Time

Average inference time for a single image 49.52706972757975 ms
Time taken to load model from disk 2.501638174057007 s
Time taken for imagepre-processing 3.3588409423828125 ms
Table 1. Average Inference Time in CPU.
Process Average Time
Average inference time for a single image 190.1567 ms
Time taken to load input to main memory 0.4680 ms
Time taken for converting float toint 12.1521 ms
Table 2. Average Inference Time in FPGA.

In both the cases, no other processes were running during inference. It can be observed that the CPU
takes much shorter time for the actual inference to take place. This can be concluded due to the fact
that in the CPU we wereoncatenating150 imagesin a batch and then performing the inferenceand
most deep learning libraiies perform greatwith batch processing. The time that is mentioned here

is the calculated time dividing by 150. On theother hand, in the FPGA, we perform the inference of

a single imae at a time due to which the average time increases significantly. On changing the batch
size to lin the CPUwe got similar timings, but still the CPU was faster.

As per as accuracy is concerned, both the CPU and FPGA gave almost similar probatsbtylts;
with some minor differences due to the using fixed point in FPGA and float32 in CPU.

12. FIXED POINT COMPUTATIONS

In a fixed-point representation, there are a fixed number of digits before and after the decimal point.
Designs implemented in fixel point are always moreefficient than their equivalent in floating point
because fixedpoint implementations consume fewer resourcesAlso, fixed-point arithmetic is much
more hardware-friendly in terms of complications and resource utilization. Reduction in FPGA
resource usage inherently leads to lower power consumption.

Signed fixed point |Sign| Integer | Fraction |

The Micron library converts all the weights and biases to Q8.8 fidepoint numbers, that is, there are
8 integer bits and 8 fractional bits in a number.

Real-Time Server Monitoring and CNN Inference on FPGA 16
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12.1 THE NUMERICAL OVERFLOW PROBLEM

We have used Q8.8 fixed point arithmetic all over the network. Since in fixed point the range and
resolution become constrainedthere is a possibility that theactivations will overflow out of the
range(-127, +127) as they are accumulated over the iterains.

From Figure 11 we can see that the overflow starts from node 18, which is@onvolution Layerand
from then onwards, it keeps on accumulating. The @ximum overflow (74.77 %) occurs at rode 25
which is again aConvolution Layer. Figure 12 shows the type of layer each node is represented b4s
the activations become out of the range, they are clipped offvhich changes the value of the
activations and ultimately leads to poor accuracy.

WARNING: overflows in node 18: 4.18 ¥ (1348/32842)
WARNING: overflows in node 19: 8.89 ¥ (49/57338)
WARNING: overflows in node 21: 1.98 ¥ (503/25354)
WARNING: overflows in node 23: 14.48 % (3479/24168)
WARNING: overflows in node 24: 14.78 % (4477/30287)
WARNING: overflows in node 25: 74.77 % (15950/21332)
WARNING: overflows in node 26: 17.28 % (5843/33806)
WARNING: overflows in node 27: 13.11 % (5298/48341)
WARNING: overflows in node 28: 57.73 % (11732/20321)
WARNING: overflows in node 31: 33.33 % (5/15)

Figure 11. Percentage of Numerical Overflow in different nodes of the CNN.

Figure 12. Node ID and type of layer of our CNN architecture.

12.2 POSSIBLE SOLUTIONS

Several different solutions came up in our team meetings to deal with the numerical overflow
problem. They are summarized as follows:

1 Normalization of the Images z In machinelearning, normalization isusually used in data
pre-processingto rescale all the features in a dataset to the same boundaries (0,1) without changing
its actual behavior or nature.
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