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PROJECT SPECIFICATION 

 

  

The Deep Underground Neutrino Experiment (DUNE) is a leading-edge, international experiment 
for neutrino science and proton decay studies built in the United States, hosted by Fermi National 
Accelerator Laboratory (Fermilab). The proto-DUNE team in CERN has build a prototype of these 
chambers to test and validate the technologies and design that will be applied to the construction of 
the DUNE Far Detector at the Sanford Underground Research Facility. 

Recent years have seen a lot of popularity of Deep Learning among the High Energy Physics 
community. Presently, the EP-UNU group is investigating various new algorithms for data 
acquisition and event selection for the DUNE neutrino experiment for understanding and analyzing 
the different neutrino interactions. Since FPGA provides the best trade-off in terms of power and 
hardware parallelism, our team has been trying to use FPGA based solutions for CNN inference. 

The major goal of this project is outlined as follows: 

- Develop a lightweight  web-based monitoring dashboard for the server hosting the FPGA for 
running the CNN Inference. 

- Compare the performance of the CPU and FPGA for CNN inference in terms of accuracy, 
power and latency. 

- Look into the problem of numerical overflow created as a result of using fixed point 
airthmetic during CNN Inference on the FPGA. 
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ABSTRACT 

 

 
Neutrinos are subatomic particles, very similar to an electron, but without any electrical charge and 
a very negligible rest mass. They are the most abundant and perhaps the most mysterious matter 
particles in the universe!  
 
Detecting and tracking neutrinos poses a different challenge both in terms of hardware and 
algorithms. Since they have very little interaction with matter, they are incredibly difficult to detect. 
So, every bit  of information produced by the neutrino interactions is required to be stored and 
analyzed at an incredible fast rate.  
 
Present day State-of-the-Art Convolutional Neural Networks (CNNs) have shown an un-precedented 
accuracy on many modern AI applications. They have become the de-facto standard for a wide range 
of tasks ranging from computer vision to machine translation due to their high accuracy and 
robustness. 
 
Research has proved that CNNs also hold the potential to excel in High Energy Physics (HEP) 
applications as compared to traditional methods in identifying particle interactions in sampling 
calorimeters or Time Projection Chambers. However, these algorithms are both computationally 
and memory extensive which limits them from running on normal CPU for real-time and power 
constrained applications. Thus, customized hardware implementation of machine learning 
algorithms can be a promising solution for higher performance and improved throughput.  
 
Another important aspect is to constantly monitor the server which hosts the FPGAs for the CNN 
inference and sent alert messages in crucial situations. 
 
This project involved the development of a lightweight, easy to use solution for the server 
monitoring so that all the important metrices can be visualized at a glance in real-time. Secondly, to 
compare the CNN inference between the server and the FPGA in terms of accuracy, power 
consumption and latency. The project also focuses on dealing with the numerical overflow problem 
due to fixed point computations in FPGA during CNN inference. 
 
 

Keywords: Proto -DUNE, Real-Time Server Monitoring, Convolutional Neural Network, FPGA, 
Fixed Point Computation . 
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INTRODUCTION 

Real-Time monitoring of servers running crucial applications are an important part of any major 
data-center or research organization. This makes a simple, lightweight and easy-to -use web-based 
monitoring tool in huge demand. It ensures monitoring all the system resources associated with the 
server to understand their resource usage patterns and optimize them accordingly to provide a 
better end-user experience.  

Recent advancement in the fields of Deep Learning has proven that Deep Convolutional Neural 
Networks (DCNN) can achieve human level accuracy, sometimes even exceeding in classification 
tasks. Research has shown that they have the potential to outperform traditional statistical based 
methods in High Energy Physics as well.  

This project is divided into two parts: At first, we develop a solution for real-time server monitoring, 
and in the second phase, we have investigated the use of CNNs for understanding the Neutrino 
interactions in the Liquid Argon Time Projection Chamber of the proto-DUNE Experiment. 

PART A: REAL-TIME SERVER MONITORING 

 

The goal of this first part of the project was to develop a web interface dashboard to seamlessly 
monitor the performance of the server (np04-srv-102) hosting our two FPGAs, at a glance, and to 
report any abnormalities immediately for any further action. The dashboard will include an overview 
of all the important metrices like CPU, Memory, Disk, Network and also our custom parameters like 
CNN Inference time, data load and processing time, power consumption and detailed CPU core 
temperatures.  

1. TOOLS USED 

1.1    PROMETHEUS  

 

Prometheus is a standalone open source monitoring and alerting toolkit. It is highly customizable 
and designed to deliver rich metrics without creating a drag on system performance. Though 
originally built at  SoundCloud, since its inception in 2012, many companies and organizations have 
adopted Prometheus, and the project has a very active developer and user community. 
 
Prometheus works well for recording any purely numeric time series. Most Prometheus 
components are written in Go while some are also written in Java, Python, and Ruby. It pushes 
metrics over http rather than pulling. Prometheus also facilitates sending alerts using Prometheus 
Alert-Manager. 
 
Prometheus has a main central component called Prometheus Server which is responsible for 
scraping the metrics (for e.g. current CPU status, memory usage, etc) from the targets (which can be 
an entire Linux server, a stand-alone Apache server, a single process or a database service) at a 

http://home.cern/cern-people/updates/2016/06/new-wings-give-icarus-flight-second-neutrino-hunt
https://soundcloud.com/
https://prometheus.io/community
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user-defined interval. These can then be stored in a time-series database locally or remotely and 
displayed back in the Prometheus server. 
 
The Prometheus Node Exporter exposes a wide variety of hardware and kernel-related metrics. It 
facilitates easy means to measure various machine resources such as memory, disk and CPU 
utilization.  
 
Figure 1 illustrates the architecture of Prometheus and some of its ecosystem components: 
 

 

Figure 1. Prometheus Architecture. 

1.2    INFLUXDB 

 
InfluxDB is an open-source time series database developed by InfluxData. It is written in Go and 
optimized for fast, high-availability storage and retrieval of time series data. This includes APIs for 
storing and querying data, processing it in the background for monitoring and alerting purposes, 
user dashboards, visualizing and exploring the data and more. It is widely used in fields such as 
operations monitoring, application metrics, Internet of Things sensor data, and real-time analytics.  

1.3    CHRONOGRAF 

 
#ÈÒÏÎÏÇÒÁÆ ÉÓ )ÎÆÌÕØ$ÁÔÁȭÓ ÏÐÅÎ ÓÏÕÒÃÅ ×ÅÂ ÁÐÐÌÉÃÁÔÉÏÎȢ Chronograf facilitates quick and easy 
visualization of the data that is stored in InfluxDB to build robust queries and alerts. 

1.4    GRAFANA 

 

Grafana is one of the most widely used visualization tools when it comes to time-series data 
analytics. Grafana allows to query, visualize and understand the metrics from any time-series 
database by numerous dynamic & reusable dashboards containing a wide range of graphs, charts 
and other plugins.  
 

https://github.com/prometheus/node_exporter
https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Time_series_database
https://en.wikipedia.org/wiki/Go_(programming_language)
https://en.wikipedia.org/wiki/Time_series
https://en.wikipedia.org/wiki/Internet_of_Things
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It also allows to seamlessly define alert rules and thresholds for the most important metrics. 
Grafana will continuously evaluate and send notifications to systems like Slack, email, Telegram, etc.  

2. THE MONITORING FRAMEWORK 

The server monitoring framework is depicted in Figure 2 . 

 

 

Figure 2. Server Monitoring Framework using Prometheus, Influxdb and Grafana. 

First, we write python scripts to scrape the metrices which we want to monitor. The basic hardware 
and kernel-related metrics can be scraped easily through the Prometheus node-exporter client. We 
only write scripts to scrape the custom parameters which we want to monitor.  

The metrices are exported through a dedicated http port. The Prometheus server collects metrics 
from targets (over HTTP) and stores them locally in the server itself. These metrices can be 
displayed in the local browser through the port (by default Prometheus server uses port 9090: 
https://localhost:9090) . 

We also export all the metrices to a remote database on CERN DBoD (Database on Demand) server. 
We have chosen InfluxDB as it provides one of the best standards and is most widely used for time-
series databases.  

The next-step was to create a web-page so that we can visualize our data through it. We host 
Grafana dashboards on the web-page and visualize the metrices by creating different graphs and 
charts. 

The different graphs and dashboards on our website are explained in the later sections. 

3. THE MONITORING DATABASE 

We created our remote InfluDB database using CERN Database on Demand (DBoD) service. CERN 
DB On Demand offers a seamless way to create and manage databases. It also allows users to 
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perform tasks that are traditionally carried out by database administrators like operating system 
and database engine updates, access to backup and recovery services and some support for service 
continuity in case of hardware failure. We got a database of size 300GB in CERN server. 

4. THE MONITORING WEB-SITE 

We have created and hosted our website (https://micron -project -monitoring.web.cern.ch ) on 
the CERN central web servers using CERN web-services. We created a PaaS (Platform-as-a-Service) 
web-application which enables deployment of small web applications as Docker containers in an 
Openshift cluster. 

We run our own dedicated Grafana instance in central web servers through which we visualize the 
different metrics by quering the InfluxDB database. 

5. GRAFANA DASHBOARDS 

5.1    THE HOME DASHBOARD 

The Grafana home dashboard contain all the basic parameter of CPU, Memory, Disk and Network 
usage. A screenshot of the Grafana home dashboard is shown in Figure 3.  

For each of CPU, Memory, File System, Network and I/O we have separate panels in our main 
dashboard which shows the details of each of them. All these metrics are being displayed by 
querying the InfluxDB database through Grafana.  

We also have our custom metrics for the CNN inference and detailed CPU core temperatures and 
power in separate dashboards which is explained in the next section.  

 

Figure 3. Grafana Home Dashboard for Server Monitoring. 

https://micron-project-monitoring.web.cern.ch/
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5.2    CPU CORE TEMPERATURE DASHBOARD 

One of the main concerns about the server was the temperature of the CPU cores when training or 
inference was running for days. So we created a separated dashboard which had a detailed view of 
temperatures of all the 24 real cores of the server and also the average socket temperatures at a 
glance. Figure 4 shows a view the dashboard. 

 

Figure 4. CPU Core Temperature Monitoring Dashboard. 

5.3    MONITORING THE CNN INFERENCE PROCESS 

The main objective behind the server monitoring was to study the important server metrics like 
temperature, memory, disk, etc. while the inference was running. We created a separate dashboard 
in Grafana to highlight these parameters (Figure 5).  

 

Figure 5. CNN inference Monitoring Dashboard (using Keras). 

The spikes in the first graph highlights the time instances in which the inference code was called 
from the command line. The next two graphs highlight the overall temperatures of the 2 sockets in 
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the CPU, each containing 12 cores. The green continuous curve represents the temperature and the 
yellow spikes represents the instances at which inference was running. The rise is core 
temperatures during the inference can be observed from the graphs. The fourth graph in the figure 
shows the memory usage of the inference process.  

We also monitor the exact time required for inference, data loading and data-processing for 
comparing the CPU performance with GPU and the FPGA. These are represented in the last three 
graphs respectively. 

The average time required for the various processes in the CPU are shown in Table 1 in Section 11. 

6. ALERTING 

An important aspect of monitoring i s sending alerts to the concerned persons when any of the 
parameters exceeds its threshold.  

We have configured Grafana to send alerts via email. This is done by creating an alert channel in 
Grafana and then configuring the smtp settings in the Grafana custom.ini file. 

#################################### SMTP / Emailing #####################  
[smtp]  
enabled = true  
host = cernmx.cern.ch:25  
user = dpaul  
# If the password contains # or ;  you have to wrap it with triple quotes. Ex """#password;"""  
password = *****  
cert_file =  
key_file =  
skip_verify = true  
from_address = debdeep.paul@cern.ch  
from_name = Debdeep Paul  

ehlo_identity =  

########################################################################### 

The next step is to define the alerting rules in Grafana. This is done by going back to the dashboard 
and setting up the thresholds and the custom messages from each of the graphs where an alert is 
required.  

We can also send SMS notification to the concerned user by the CERN sms via email service. This 
service allows to send free of charge short messages to CERN GSMs by sending email to the 
following address: +4175411xxxx@mail2sms.cern.ch (xxxx is last 4 digits of the GSM).  

 

 

 

 

 

mailto:+4175411xxxx@mail2sms.cern.ch
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PART B: CNN Inference on FPGA 

 

This part of the project involved running the CNN inference on the CPU as well as the FPGA for 
comparison of their performance. Also, it focuses on investigating into the numerical overflow 
problem resulting due to fixed-point computations during the CNN inference on the FPGA.  

We first give a brief description of CNN and the FPGA inference framework and then focus on the 
problems and the solutions which we dealt with. 

7. CONVOLUTIONAL NEURAL NETWORKS 

Convolutional Neural Networks (CNN) are a class of deep, feed-forward artif icial neural 
networks (ANN), which are most popularly used in image classification, object recognition 
and similar tasks. They are particularly best suited for operation on 2D input data such as images.  
 

 

Figure 6. A typical CNN Architecture. 

Research has shown that CNNs are well suited to a broad class of detectors used in High Energy 
Physics (HEP). In our project, we have also been trying to implement CNN to study and analyse 
different particle interactions in our Proto-DUNE detector. Each of these detectors (Single Phase and 
Dual Phase) is a 10x10x10-metre Liquid Argon Time Projection Chamber,  containing about 800 
tonnes of liquid argon.  
 
We record the electrical signal released by ionising particles crossing the detector by a 3-
dimensional electrode structure. When these signals are combined, they result in what is essentially 
an image of the physics interaction that takes place within the chamber. These captured signals are 
fed into neural networks for studying different interactions. 

8. FPGA 

Field Programmable Gate Arrays or FPGAs are programmable 
logic devices which are used for rapid prototyping of complex 
digital systems. FPGAs are pre-fabricated silicon chips containing 
a matrix of Configurable Logic Blocks (CLBs comprising of flip -flops, 
LUTs, multiplexers etc.) and I/Os connected via programmable 
routing. Most modern FPGAs also contain a heterogeneous 
mixture of different blocks like dedicated memory blocks and 
DSP Blocks.  

Figure 7. Field Programmable Gate Array. 

http://home.cern/cern-people/updates/2016/06/new-wings-give-icarus-flight-second-neutrino-hunt
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FPGAs can be configured by a designer after manufacturing; hence the term "field programmable". 
The FPGA configuration is generally specified using a hardware description language. 
Once the HDL model is verified, the description is synthesized and mapped into the FPGA by special 
tools and softwares provided by the manufacturer. 

8.1    CNN INFERENCE ON FPGA 

 

FPGAs provides the perfect trade-off between the flexibility and programmability of software 
running on a general-purpose CPU and the speed and power efficiency of a custom designed 
Application Specific Integrated Circuit (ASIC). 
 
CNN algorithms are inherently  highly parallelizable in nature and FPGAs are designed to handle 
irregular parallelism and fine-grained computations which makes them the preferred solution for 
CNN deployment.  

9.    HIGH LEVEL SYNTHESIS (HLS) 

 

High-level synthesis (HLS) is an automated design process that interprets an algorithmic 
description of a desired behavior and creates digital hardware that implements that behavior.   
 
HLS starts with an algorithmic description in a high-level language such as SystemC and ANSI 
C/C++. The high-level synthesis tools handle the micro-architecture and transforms the code into 
RTL implementations. The RTL implementations are then used directly in a conventional logic 
synthesis flow to create a gate-level implementation. HLS greatly reduces the intellectual property 
(IP) development cycle from months to weeks. 

10.     CNN INFERENCE WORKFLOW 

A typical Neural Network deployment consists of two phases: Training and Inference. Training 
involves both forward and backward passes to learn the weights and biases and naturally is more 
compute extensive than inference. Our Neural Network was trained using a GPU using our proto-
DUNE dataset comprising of 13 Million images. The model architecture and the weights were saved 
in h5 format.  
 
Our server hosts two FPGAs which are accessible through the PCI slots : 
 
¶ Micron SB-852  

 
SB-852 is a full-height, GPU-length, PCIe x16 Gen3 board  
designed to deliver unprecedented levels of high-bandwidth  
and low-latency performance. It is equipped with a  
Xilinx®  Virtex Ultrascale+ FPGA, a 2GB Hybrid Memory Cube  
(HMC), up to 512GB of high-performance memory and  
two QSFP28 connectors.    
   

Figure 8. Micron SB-852. 

https://en.wikipedia.org/wiki/Field-programmability
https://en.wikipedia.org/wiki/Hardware_description_language
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¶ Micron AC-510 
 

The Micron AC-510 features a Xilinx Kintex® UltraScale 060  
FPGA with Micron high-bandwidth Hybrid Memory Cube (HMC).  
It features a bandwidth of up to 60 GB/s and also supports  
/ÐÅÎ#,Ά ÆÒÁÍÅ×ÏÒË ÁÌÏÎÇ ×ÉÔÈ -ÉÃÒÏÎ 0ÉÃÏ Framework  
for efficient acceleration of demanding applications. 

Figure 9. Micron AC-510. 

 
To run the CNN inference on the FPGAs it is required to export the bit-file to the FPGA for mapping 
the hardware architecture onto the FPGA. This bit-file is generated by the Micron ForwardNext 
library . This library takes an ONNX model as input and generates the bit-stream. ONNX or One 
Neural Network Exchange format is an open format to represent deep learning models aimed to 
allow framework inter -portability between different machine learning libraries. The CPU can 
communicate to the FPGA via the PCI slots of the motherboard. The entire flow-chart is represented 
in Figure 10. 
 
 

 
 
 

Figure 10. CNN Inference Workflow. 

11.     FPGA VS CPU FOR CNN INFERENCE 

The Neural Network was trained on a subset of our DUNE dataset. We used a slightly modified 
version of the ResNet-18 Network for our classification with one softmax output over 13 values 
corresponding to the 13 types of neutrino interaction considered and saved the weights. We tested 
the inference both on the CPU and the FPGA. The server (CPU) contains a Intel Xeon Silver 4116, 2.1 
GHz Processor with 195237MB DDR4 RAM.  
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Table 1 summarizes the inference time in the CPU and Table 2 on the Micron FPGA 510.  
 

Process Average Time 

Average inference time for a single image 49.52706972757975 ms 

Time taken to load model from disk 2.501638174057007 s 

Time taken for image pre-processing 3.3588409423828125 ms 

 
Table 1.         Average Inference Time in CPU. 

 

Process Average Time 

Average inference time for a single image 190.1567 ms 

Time taken to load input to main memory 0.4680 ms 

Time taken for converting float to int  12.1521 ms 

 
Table 2.         Average Inference Time in FPGA. 

 

In both the cases, no other processes were running during inference. It can be observed that the CPU 
takes much shorter time for the actual inference to take place. This can be concluded due to the fact 
that in the CPU we were concatenating 150 images in a batch and then performing the inference and 
most deep learning libraries perform great with  batch processing. The time that is mentioned here 
is the calculated time; dividing by 150. On the other hand, in the FPGA, we perform the inference of 
a single image at a time due to which the average time increases significantly. On changing the batch 
size to 1 in the CPU, we got similar timings, but still the CPU was faster. 
 
As per as accuracy is concerned, both the CPU and FPGA gave almost similar probability results; 
with some minor differences due to the using fixed point in FPGA and float32 in CPU. 

12.     FIXED POINT COMPUTATIONS 

 
In a fixed-point representation, there are a fixed number of digits before and after the decimal point.  
Designs implemented in fixed point are always more efficient than their equivalent in floating point 
because fixed-point implementations consume fewer resources. Also, fixed-point arithmetic is much 
more hardware-friendly in terms of complications and resource utilization. Reduction in FPGA 
resource usage inherently leads to lower power consumption. 
 

 
 
The Micron library converts all the weights and biases to Q8.8 fixed point numbers, that is, there are 
8 integer bits and 8 fractional bits in a number. 
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12.1 THE NUMERICAL OVERFLOW PROBLEM 

 
We have used Q8.8 fixed point arithmetic all over the network. Since in fixed point the range and 
resolution become constrained, there is a possibility that the activations will overflow out of the 
range (-127, +127) as they are accumulated over the iterations.   
 
From Figure 11 we can see that the overflow starts from node 18, which is a Convolution Layer and 
from then onwards, it keeps on accumulating. The maximum overflow (74.77 %) occurs at node 25 
which is again a Convolution Layer. Figure 12 shows the type of layer each node is represented by. As 
the activations become out of the range, they are clipped off; which changes the value of the 
activations and ultimately leads to poor accuracy. 

 

 
 

Figure 11. Percentage of Numerical Overflow in different nodes of the CNN. 
 

 
 

Figure 12. Node ID and type of layer of our CNN architecture. 

 

12.2 POSSIBLE SOLUTIONS 

 

Several different solutions came up in our team meetings to deal with the numerical overflow 
problem. They are summarized as follows: 
 
¶ Normalization of the Images  ɀ In machine learning, normalization is usually used in data 

pre-processing to rescale all the features in a dataset to the same boundaries (0,1) without changing 
its actual behavior or nature.  
 


